Angewandte Mathematik Und Informatik Universit at Zu K Oln Minimal Elimination of Planar Graphs
ثبت نشده
چکیده
We prove that the problem to get an inclusion minimal elimination ordering can be solved in linear time for planar graphs. The basic structure of the linear time algorithm is as follows. We select a vertex r as maximum and get a rst approximation of a minimal elimination ordering considering a vertex x as smaller than y if x has a larger distance than y from r. Using planarity, one can determine the ll-in edges joining two vertices of the same distance from r almost immediately. The algorithm determines an O(n)-representation of these ll-in edges. To determine the nal ll-in ordering, we use similar techniques as in the general parallel minimal elimination algorithm of 5].
منابع مشابه
Angewandte Mathematik Und Informatik Universit at Zu K Oln Parallel Turbulence Simulation Based on Mpi
متن کامل
Angewandte Mathematik Und Informatik Universit at Zu K Oln Simplicity and Hardness of the Maximum Traveling Salesman Problem under Geometric Distances
متن کامل
Angewandte Mathematik Und Informatik Universit at Zu K Oln Basic Design Ideas for the Branch-and-cut-system Abacus
متن کامل
Angewandte Mathematik Und Informatik Universit at Zu K Oln Tree Spanners in Planar Graphs Ss Andor P. Fekete Center for Parallel Computing Universitt at Zu Kk Oln D{50923 Kk Oln Germany
A tree t-spanner of a graph G is a spanning subtree T of G in which the distance between every pair of vertices is at most t times their distance in G. Spanner problems have received some attention, mostly in the context of communication networks. It is known that for general unweighted graphs, the problem of deciding the existence of a tree t-spanner can be solved in polynomial time for t = 2,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998